
OpenAI in PHP
How AI works in theory & how to use it in PHP

How LLMs Work

Weekly Topics

1. How Generative AI & LLMs Work
2. Prompt Engineering
3. Retrieval-Augmented Generation (RAG)
4. Fine-Tuning a Model
5. Agents
6. Using VUMC’s OpenAI API in PHP

Key Concepts

• LLM = Large Language Model
• Tokenization
• Probabilistic Computation
• Technological Limitations
• Plugins & Functions
• Output: Streaming
• Language Support
• Costs
• Need for Review

LLMs

• Convert text into tokens (more coming)
• Turn tokens into vectors & matrices
• Quick computing on Graphical Processing Units (GPUs)
• Other AI-specific processing units under development

• Energy-intensive calculations on GPUs

Generativity of LLMs

• Based on weights, the model predicts/generates
appropriate feedback for prompt
• OpenAI, used by Microsoft Azure, with ChatGPT-4 as the

current “gold standard” of AI
• Other LLMs, including open-source implementations

have become more common
• Not supported by VUMC for security/privacy purposes

Tokenization

• For analysis, AI turns text into “tokens” that represent
about ¾ of a word.
• Each token represents a meaningful concept
• E.g., running becomes “run” and “ing”
• E.g., basketball becomes “basketball”

• Tokens are in turn turned into huge vectors and matrices
for analysis (Linear Algebra)

Probabilistic Computation

• With the input of the prior prompt & the previous token,
matrix math returns a matrix of recommended items for
the next token with a list of probabilities
• Randomization is used, with a random seed &

temperature for willingness to accept less-
recommended options
• You can also specify a minimum rank in the list to avoid

the LLM choosing a “wacky” item

Temperature & Seed: Indices of
Determinism
• Temperature = float [0.0 – 2.0]
• Higher numbers = more creative & less brittle
• Lower numbers = more deterministic & more brittle
• 0.7 is a common value for chatbots to avoid becoming brittle
• 2.0 would cause some crazy responses
• Specified in the input parameters

• Seed = Integer [1 – MaxInt]
• This is same seed used to feed the randomization code, just as

with any random number generator
• To make items less random, you can specify a seed in the input

parameters

Technological Limitations

• Hallucinations
• Mathematics & Reasoning
• Training Data
• One Prompt at a Time

Hallucinations

• Every once in a while, AI will provide a wildly inaccurate
response
• E.g., presented with cancer symptoms, it diagnoses a cold

• Unknown cause – subject of much investigation
• Bad probability choice?
• Bad training data?
• Bad reasoning?

• Gets worse as input gets larger (more tokens)
• Necessitates keeping a human in the loop for review

Mathematics & Reasoning

• AI is terrible at math, especially with larger numbers
• Why? It predicts the next token (i.e., one digit) from the

prior digit instead of doing the math algorithm
• E.g., “What is 432587 * 574123?” “432587 × 574123 =

248332228101.”
• Calculator: 248358146201

• Workaround: Functions & plugins
• Better reasoning by adding “Show your work.” But still not

the right answer!
• This technique can help any reason-oriented task, not just

math!

Mathematics & Reasoning

To manually calculate (
432587 \times 574123),
we will break it down step
by step.
Step 1: Write the numbers
vertically for
multiplication

432587
× 574123

Step 2: Multiply each digit
of the second number by
the first number
We multiply (432587) by
each digit of (574123),
starting from the
rightmost digit.

Multiply by 3 (units place
of 574123):
[432587 \times 3 =
1297761] Place this under
the line, aligned with the
units place:

432587
× 574123

1297761

…

Step 3: Add everything
together
Now, sum up all the rows:

1297761
+ 8651740
+ 43258700
+ 173034800
+ 3028109000
+21629350000

248332228101

Final Answer:
[432587 \times 574123 =
248332228101]

Training Data

• LLMs are only as good as their training data
• No fact-checking capabilities!
• “Garbage in, garbage out”
• Must avoid bad training data or at least to drown it out
• Manual data curation helps
• True for custom input information in prompts, RAG, and

fine-tuning (cf. coming weeks)

One Prompt at a Time

• AI has no inherent means of storing the history of a
conversation (i.e., no memory!)
• It simply replies to the previous prompt
• Workaround: Store summaries of past conversation &

provide in background
• More coming in Prompt Engineering presentation…

Plugins & Functions

• LLMs can call functions or plugins to perform certain
tasks
• E.g., check the temperature in a city, look up data in a database,

use a calculator
• The LLM decides when to call the plugin/function based

on the prompt and the code’s description
• Effect: Injects some determinism into probabilism
• Not yet expected to be used in EFS projects

Output: Streaming

• Because AI bases next word on prior token, output is
conducive to streaming
• AI is trying to predict next token sequentially, and outputs them

token-by-token onto an output stream
• Thus, chat tools output data real-time
• APIs wait until full response completed

Language Support

• Generally, LLMs are good with code because coders
developed it for their own purposes

• Great: Python integrations
• JSON, CSVs, YAML, Markdown
• Query languages (e.g., MySQL, NoSQL)

• Must watch out for language commentary
• Can request “Without commentary…” to LLM

Cost

• Costs calculated per token based on the processing
required
• Costs are minimal per prompt (cents per prompt), but

can accrue in high-volume applications
• Costs must be paid attention to throughout these

presentations
• Costs: ChatGPT-4 > ChatGPT-3.5-Turbo

Need for Review

• Always need to keep a human “in the loop” for review to
avoid hallucinations
• AI cannot be an excuse to turn off your brain
• You can use AI to check itself; however, it’s expensive to

check an entire section
• Still, this automation in ChatGPT-4 remains the gold standard

for evaluation
• Use another instance/session if possible

• Most important lesson for software design:
Review AI’s output

Recap

• LLMs
• Tokenization
• Probabilistic Computation
• Technological Limitations
• Plugins & Functions
• Output: Streaming
• Language Support
• Costs
• Need for Review

Weekly Topics

1. How Generative AI & LLMs Work
2. Prompt Engineering
3. Retrieval-Augmented Generation (RAG)
4. Fine-Tuning a Model
5. Agents
6. Using VUMC’s OpenAI API in PHP

Next Week: Prompt Engineering

OpenAI in PHP
How AI works in theory & how to use it in PHP

How LLMs Work

